Quantcast
Channel: Undocumented Matlab
Viewing all articles
Browse latest Browse all 219

Afterthoughts on implicit expansion

$
0
0

Matlab release R2016b introduced implicit arithmetic expansion, which is a great and long-awaited natural expansion of Matlab’s arithmetic syntax (if you are still unaware of this or what it means, now would be a good time to read about it). This is a well-documented new feature. The reason for today’s post is that this new feature contains an undocumented aspect that should very well have been documented and even highlighted.

The undocumented aspect that I’m referring to is the fact that code that until R2016a produced an error, in R2016b produces a valid result:

% R2016a
>> [1:5] + [1:3]'
Error using  + 
Matrix dimensions must agree.
 
% R2016b
>> [1:5] + [1:3]'
ans =
     2     3     4     5     6
     3     4     5     6     7
     4     5     6     7     8

This incompatibility is indeed documented, but not where it matters most (read on).

I first discovered this feature by chance when trying to track down a very strange phenomenon with client code that produced different numeric results on R2015b and earlier, compared to R2016a Pre-release. After some debugging the problem was traced to a code snippet in the client’s code that looked something like this (simplified):

% Ensure compatible input data
try
    dataA + dataB;  % this will (?) error if dataA, dataB are incompatible
catch
    dataB = dataB';
end

The code snippet relied on the fact that incompatible data (row vs. col) would error when combined, as it did up to R2015b. But in R2016a Pre-release it just gave a valid numeric matrix, which caused numerically incorrect results downstream in the code. The program never crashed, so everything appeared to be in order, it just gave different numeric results. I looked at the release notes and none of the mentioned release incompatibilities appeared relevant. It took me quite some time, using side-by-side step-by-step debugging on two separate instances of Matlab (R2015b and R2016aPR) to trace the problem to this new feature.

This implicit expansion feature was removed from the official R2016a release for performance reasons. This was apparently fixed in time for R2016b’s release.

I’m totally in favor of this great new feature, don’t get me wrong. I’ve been an ardent user of bsxfun for many years and (unlike many) have even grown fond of it, but I still find the new feature to be better. I use it wherever there is no performance implication, the need to support older Matlab releases, or the possibility of incorrect results due to dimensional mismatch.

So what’s my point?

What I am concerned about is that I have not seen the new feature highlighted as a potential backward compatibility issue in the documentation or the release notes. Issues of far lesser importance are clearly marked for their backward incompatibility in the release notes, but not this important major change. A simple marking of the new feature with the warning icon () and in the “Functionality being removed or changed” section would have saved my client and me a lot of time and frustration.

MathWorks are definitely aware of the potential problems that the new feature might cause in rare use cases such as this. As Steve Eddins recently noted, there were plenty of internal discussions about this very thing. MathWorks were careful to ensure that the feature’s benefits far outweigh its risks (and I concur). But this also highlights the fact that MathWorks were fully aware that in some rare cases it might indeed break existing code. For those cases, I believe that they should have clearly marked the incompatibility implications in the release notes and elsewhere.

I have several clients who scour Matlab’s release notes before each release, trying to determine the operational risk of a Matlab upgrade. Having a program that returns different results in R2016b compared to R2016a, without being aware of this risk, is simply unacceptable to them, and leaves users with a disinclination to upgrade Matlab, to MathWorks’ detriment.

MathWorks in general are taking a very serious methodical approach to compatibility issues, and are clearly investing a lot of energy in this (a recent example). It’s too bad that sometimes this chain is broken. I find it a pity, and think that this can still be corrected in the online doc pages. If and when this is fixed, I’ll be happy to post an addendum here.

In my humble opinion from the backbenches, increasing the transparency on compatibility issues and open bugs will increase user confidence and result in greater adoption and upgrades of Matlab. Just my 2 cents…


Viewing all articles
Browse latest Browse all 219

Trending Articles